A descriptive Main Gap Theorem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zariski’s Main Theorem

By base change, i′n is also a closed embedding, hence affine. We have the unit map F → in∗i ′∗ n (F ). Applying Rf∗ gives a map Rf∗(F ) → Rf∗i ′ n∗i ′∗ n (F ). Since i ′ n is affine, Ri′n∗ ≃ i ′ n∗. By Leray’s spectral sequence, Rf∗i ′ n∗ ≃ R(f ◦ i ′ n)∗ ≃ R(in ◦ fn)∗ ≃ in∗Rfn∗. Applying H, we have a map Rf∗(F ) → R f∗i ′ n∗i ′∗ n (F ) ≃ in∗R fn∗(i ′∗ n (F )). Applying in∗i ∗ n to both sides an...

متن کامل

An optimal gap theorem

By solving the Cauchy problem for the Hodge-Laplace heat equation for d-closed, positive (1,1)-forms, we prove an optimal gap theorem for Kähler manifolds with nonnegative bisectional curvature which asserts that the manifold is flat if the average of the scalar curvature over balls of radius r centered at any fixed point o is a function of o(r−2). Furthermore via a relative monotonicity estima...

متن کامل

PCP theorem: gap amplification

In this note, we prove the following theorem, which is a major step toward a proof of the PCP theorem. Recall that in the optimization problem 2-CSPW, we are given a list of arity-2 constraints between variables over an alphabet of size W and the goal is to find an assignment to the variables that satisfies as many of the constraints as possible. A 2-CSPW instance φ is d-regular if every variab...

متن کامل

Main Theorem of Complex Multiplication

In [S, Ch. IV, §18] the Main Theorem of complex multiplication is proved in a manner that uses some adelic formalism. However, [S] uses a framework for algebraic geometry that has long been abandoned, so many of the beautiful ideas there are somewhat shrouded in mystery for the reader who is unfamiliar with the pre-Grothendieck approaches to algebraic geometry and abelian varieties. The aim of ...

متن کامل

A Generalization of the Gap Forcing Theorem

The Main Theorem of this article asserts in part that if an extension V ⊆ V satisfies the δ approximation and covering properties, then every embedding j : V → N definable in V with critical point above δ is the lift of an embedding j ↾ V : V → N definable in the ground model V . It follows that in such extensions there can be no new weakly compact cardinals, totally indescribable cardinals, st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Logic

سال: 2020

ISSN: 0219-0613,1793-6691

DOI: 10.1142/s0219061320500257